-
Lorlatinib for Newly-Diagnosed High-Grade Glioma With ROS or ALK Fusion
The goal of this study is to determine the response of the study drug loratinib in treating children who are newly diagnosed high-grade glioma with a fusion in ALK or ROS1. It will also evaluate the safety of lorlatinib when given with chemotherapy or after radiation therapy.
-
Magnetic Resonance Fingerprinting Guided Extended Resection in Glioblastomas
Magnetic resonance imaging, MRI, is a procedure that uses radio waves, a powerful magnet, and a computer to make a series of detailed pictures of areas inside the body. The goal of this study is to determine if MR fingerprinting, new way of acquiring MRI images, can help identify the extent of tumor spread in the brain, better than routine MRI images.
-
MRI Hypoxia Study for Glioblastoma Multiforme (GBM) Radiation Therapy
This study is designed to evaluate the role of Oxygen Enhanced (OE) Magnetic resonance imaging (MRI) and Blood Oxygenation Level Dependent (BOLD) MRI in detecting regions of hypoxic tumour and to evaluate their use as imaging methods to selectively deliver targeted radiotherapy to regions of aggressive disease.
-
New Antigens Against Glioblastoma
In this study the investigators will select and develop potential therapeutic monoclonal antibodies (mAbs) for glioblastoma (GB). Activities include tissue microarray (TMA) to test monoclonal antibodies specificity and target distribution, selection of glioblastoma specific functional monoclonal antibodies, identification of candidate targets.
-
NG101m Adjuvant Therapy in Glioblastoma Patients
The purpose of this clinical trial is to evaluate the addition of NG101m adjuvant therapy to standard of care treatment of glioblastoma multiforme. All subjects will receive NG101m capsules along with the standard treatment of temozolomide and radiation.
-
Niraparib and Temozolomide in Patients Glioblastoma
The study evaluates safety, tolerability, pharmacokinetics at recommended phase II dose (RP2D) and preliminary antitumor activity of Niraparib + dd-TMZ "one week on, one week off" in patients affected by recurrent GBM IDH wild-type and recurrent IDH mutant (WHO grade 2-4) gliomas. The treatment will be administered until progressive disease, unacceptable toxicity, consent withdrawal, lost to follow-up or death. The entire study is expected to last approximately 40 months.
-
Personalized Trial in ctDNA-level-relapse Glioblastoma
Tumor in situ fluid (TISF) refers to the fluid within the surgical cavity of patients with glioblastoma. Postoperative serial TISF is collected for circulating tumor DNA (ctDNA) analysis and identifying ctDNA-level relapse driven by one or a set of specific genomic alterations before overt imaging recurrence of the tumor. This single-arm open-label prospective pilot feasibility trial recruiting 20 adult patients with ctDNA-level-relapse glioblastoma who are assigned to receive the personalized study treatment based on the genetic profile of their serial TISF ctDNA. It will be aimed to test whether the personalized intervention can prolong the progression-free and overall survival...
-
Phase 2, Open-label, Single-arm Study on the Use of Metformin as Adjunctive Therapy in High-grade Glioma
About 75% of CNS malignant tumors are classified as gliomas and the IDH-wildtype glioblastoma (GBM) represents the most aggressive form among CNS malignancies. This is a nationwide single-center phase II drug clinical trial with an approximate duration of 32 months. The clinical trial will be single-arm to evaluate the biological activity and effects of metformin in combination with TMZ in patients with GBM.
-
PH Sensitive MRI Based Resections of Glioblastoma
Current standard of care therapy and all FDA approved adjuvant therapy for glioblastoma continue to provide less than 12 months of progression free survival (PFS) and less than 24 months of overall survival (OS). There is an extreme need for any novel therapy against glioblastoma that increases progression free survival and overall survival in patients diagnosed with this invasive form of cancer. A significant reason for such a poor prognosis is the infiltrative nature of this tumor in non-enhancing regions (NE) beyond the central contrast-enhancing (CE) portion of tumor, which is difficult to visualize and treat with surgical, medical, or radiotherapeutic means. Since tumor...
-
PH Weighted Chemical Exchange Saturation Transfer MRI-Based Surgical Resection to Improve Survival in Patients with Glioblastoma
This phase III trial compares pH weighted chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI)-based surgical resections to standard of care surgical resections for the treatment of patients with glioblastoma. Standard of care therapy for glioblastoma is surgery to remove tumor tissue that enhances on standard MRI imaging, however, it has been shown that significant tumor burden exists in the region around the tumor tissue that does not enhance with standard MRI. MRI is a procedure in which radio waves and a powerful magnet linked to a computer are used to create detailed pictures of areas inside the body. These pictures can show the difference between...
391 - 400 of 430 Trials