cropped color_logo_with_background.png

Evaluation of [18F]-FMISO for Non Operated Glioblastoma

Study Purpose

Hypoxia is recognized to be an independent predictor of clinical outcome in oncology. PET using [18F]-FMISO has been described to be useful for the non invasive assessment of hypoxia in cancer. The use of this radiotracer for brain tumours is very limited and there is no standard to acquire and quantify [18F]-FMISO uptake. So there is a need for a methodological evaluation of this PET tracer The purpose of this research is to define optimal parameters for acquisition and data exploitation to quantify [18F]-FMISO uptake and so predict clinical outcome in glioblastomas. Low sensitivity to radiation of glioblastoma is partly caused by hypoxia. Hypoxia in tumours is not predicted by tumour size. Detecting and monitoring tissue oxygenation are of great interest to modify therapeutic strategies, including local dose escalation for radiotherapy or select chemotherapeutic agents with better impact in glioblastomas. PET with appropriate radiotracers, especially [18F]-FMISO, enables non-invasive assessment of hypoxia. [18F]-FMISO only accumulates in viable hypoxic cells. So, it has been demonstrated that PET using 18F-FMISO is suitable to localize and quantify hypoxia. But there isn't any optimal acquisition protocol or standardized images quantification treatment. Thus, the interpretation of [18F]-FMISO PET images and the predictive value of [18F]-FMISO SUV (Standardized Uptake Value) remain unclear explaining the need of methodological approaches.

Recruitment Criteria

Accepts Healthy Volunteers

Healthy volunteers are participants who do not have a disease or condition, or related conditions or symptoms

No
Study Type

An interventional clinical study is where participants are assigned to receive one or more interventions (or no intervention) so that researchers can evaluate the effects of the interventions on biomedical or health-related outcomes.


An observational clinical study is where participants identified as belonging to study groups are assessed for biomedical or health outcomes.


Searching Both is inclusive of interventional and observational studies.

Interventional
Eligible Ages 18 Years and Over
Gender All
More Inclusion & Exclusion Criteria

Inclusion Criteria:

  • - Patients over 18.
  • - Patients with a malignant tumour glioblastomas proposed for a radical treatment consisting in conformational radiotherapy and/or chemotherapy.
  • - Signed informed consent.

Exclusion Criteria:

  • - Patients who can't undergo radiotherapy or chemotherapy.
  • - Patients with distant metastases known before inclusion except renal cancer where patients with metastases can be included.
  • - Patients suffering of a second cancer or treated before by radiotherapy in the tumour site.
- Pregnant and breast feeding women, women in age to procreate without contraception

Trial Details

Trial ID:

This trial id was obtained from ClinicalTrials.gov, a service of the U.S. National Institutes of Health, providing information on publicly and privately supported clinical studies of human participants with locations in all 50 States and in 196 countries.

NCT00906893
Phase

Phase 1: Studies that emphasize safety and how the drug is metabolized and excreted in humans.

Phase 2: Studies that gather preliminary data on effectiveness (whether the drug works in people who have a certain disease or condition) and additional safety data.

Phase 3: Studies that gather more information about safety and effectiveness by studying different populations and different dosages and by using the drug in combination with other drugs.

Phase 4: Studies occurring after FDA has approved a drug for marketing, efficacy, or optimal use.

Phase 2
Lead Sponsor

The sponsor is the organization or person who oversees the clinical study and is responsible for analyzing the study data.

University Hospital, Bordeaux
Principal Investigator

The person who is responsible for the scientific and technical direction of the entire clinical study.

Aymeri HUCHET, PHU
Principal Investigator Affiliation University Hospital, Bordeaux
Agency Class

Category of organization(s) involved as sponsor (and collaborator) supporting the trial.

Other
Overall Status Completed
Countries France
Conditions

The disease, disorder, syndrome, illness, or injury that is being studied.

Glioblastoma
Additional Details

Hypoxia is one of the worst prognostic factors of clinical outcome in glioblastomas. Today, it is well admitted that hypoxia is heterogeneous, variable within different tumour types and varied spatially and temporally. Hypoxia induced proteomic and gene expression changes that lead to increase angiogenesis, invasion and metastasis. So the hypoxic fraction in solid tumours reduces their sensitivity to conventional treatment modalities, modulating therapeutic response to ionizing radiation or certain chemotherapeutic agents. This is particularly important in glioblastomas. Hypoxic cells in solid tumours could influence local failure following radiotherapy and has been associated with malignant progression, loco regional spread and distant metastases and represents an increasing probability of recurrence. Thus, the non-invasive determination and monitoring of the oxygenation status of tumours is of importance to classify patients' outcome and modify therapeutic strategies in those tumours. Actually the oxygenation status of individual tumours is not assessed routinely. Numerous different approaches have been used to identify hypoxia in tumours. Eppendorf oxygen probe measurements (pO2 histography) may be considered as a 'gold standard' for hypoxia in human malignancies. However, it is an invasive method being confined to superficial, well accessible tumours and requires many measures. PET using [18F]Fluoro-deoxyglucose ([18F]-FDG), allows non-invasive imaging of glucose metabolism and takes a growing place in cancer staging, but [18F]-FDG can't assess correctly the oxygenation status of tumours and is not suitable for brain tumor. PET with appropriate radiotracers enables non-invasive assessment of presence and distribution of hypoxia in tumours. Nitroimidazoles are a class of electron affinic molecules that were shown to accumulate in hypoxic cells in cultures and in vivo. [18F]-FMISO is the most frequently employed tracer; its intracellular retention is dependent on oxygen concentration. Consequently [18F]-FMISO has been used as a non-invasive technique for detection of hypoxia in human. Different authors have demonstrated that it is suitable to localize and quantify hypoxia. Thus, [18F]-FMISO PET has been studied to evaluate prognosis and predict treatment response. However, some investigators report an unclear correlation between Eppendorf measurements and standardized uptake values (SUV). This observation may be explained by the structural complexity of hypoxic tumour tissues. Nevertheless, there is a need of standardized procedures to acquire and quantify [18F]-FMISO uptake. Actually the use of this tracer is very limited in clinic and the academic studies have included small populations of patients and suffer of the heterogeneity of technical procedures. The aim of this study is to determine the optimal acquisition protocol and treatment parameters enable to describe [18F]-FMISO uptake in glioblastomas known to be hardly influenced by hypoxia. Then, validate [18F]-FMISO-PET as a prognostic maker of recurrence. We will introduce a pretherapy [18F]-FMISO PET-CT in the treatment planning of patients suffering of different newly diagnosed glioblastoma and eligible to a radical treatment with curative intent, consisting of conformational radiotherapy and chemotherapy. [18F]-FMISO PET-CT results will not be take into account for the patient management. We will test different acquisition protocols and use a wild panel of quantification parameters issued from published studies and original ones developed by our team enable to describe [18F]-FMISO uptake. Patients will be followed clinically and para-clinically during one year after the end of the treatment according to the edited recommendations of each tumour type and grade to analyze outcome (failure is define as persistent disease in the primary site, progression of disease, locoregional relapse after complete response or distant metastasis). Thus we will be able to measure failure free survival and determine overall survival.

Arms & Interventions

Arms

Experimental: 1

Interventions

Procedure: - 18F]-FMISO PET-CT

pretherapy([18F]-FMISO) positon emission tomography-computed tomography. Different acquisition protocols will be tested and a wild panel of quantification parameters issued from published studies and original ones developed by our team enable to describe [18F]-FMISO uptake will be used.

Contact a Trial Team

If you are interested in learning more about this trial, find the trial site nearest to your location and contact the site coordinator via email or phone. We also strongly recommend that you consult with your healthcare provider about the trials that may interest you and refer to our terms of service below.

International Sites

CHU de Bordeaux - Hôpital Pellegrin, Bordeaux, France

Status

Address

CHU de Bordeaux - Hôpital Pellegrin

Bordeaux, , 33076