cropped color_logo_with_background.png

Response Monitoring Trial in Patients With Suspected Recurrence of Glioblastoma

Study Purpose

It was previously shown that 18F-DOPA PET imaging results in intended management changes in 41% of brain tumor patients. However, its impact on patient outcome defined as survival, costs, and/or quality of life has not been demonstrated. Regulatory agencies require randomized trials to determine the impact of PET on patient management and outcome. In this study we hypothesize that the addition of 18F-DOPA PET will improve patient outcome by more accurately identifying presence or absence of tumor recurrence than conventional imaging.

Recruitment Criteria

Accepts Healthy Volunteers

Healthy volunteers are participants who do not have a disease or condition, or related conditions or symptoms

No
Study Type

An interventional clinical study is where participants are assigned to receive one or more interventions (or no intervention) so that researchers can evaluate the effects of the interventions on biomedical or health-related outcomes.


An observational clinical study is where participants identified as belonging to study groups are assessed for biomedical or health outcomes.


Searching Both is inclusive of interventional and observational studies.

Interventional
Eligible Ages 18 Years - 99 Years
Gender All
More Inclusion & Exclusion Criteria

Inclusion Criteria:

  • - Suspected first recurrence of a glioblastoma tumor by clinical measures and/or MRI.
  • - Age 18-99 years.

Exclusion Criteria:

  • - Breast feeding/ Pregnancy.
  • - Severe psychiatric illness.
- Primary diagnosis of a glioblastoma

Trial Details

Trial ID:

This trial id was obtained from ClinicalTrials.gov, a service of the U.S. National Institutes of Health, providing information on publicly and privately supported clinical studies of human participants with locations in all 50 States and in 196 countries.

NCT01813877
Phase

Phase 1: Studies that emphasize safety and how the drug is metabolized and excreted in humans.

Phase 2: Studies that gather preliminary data on effectiveness (whether the drug works in people who have a certain disease or condition) and additional safety data.

Phase 3: Studies that gather more information about safety and effectiveness by studying different populations and different dosages and by using the drug in combination with other drugs.

Phase 4: Studies occurring after FDA has approved a drug for marketing, efficacy, or optimal use.

N/A
Lead Sponsor

The sponsor is the organization or person who oversees the clinical study and is responsible for analyzing the study data.

Jonsson Comprehensive Cancer Center
Principal Investigator

The person who is responsible for the scientific and technical direction of the entire clinical study.

Johannes Czernin, MD
Principal Investigator Affiliation Professor
Agency Class

Category of organization(s) involved as sponsor (and collaborator) supporting the trial.

Other
Overall Status Completed
Countries United States
Conditions

The disease, disorder, syndrome, illness, or injury that is being studied.

Glioma, Glioblastoma
Study Website: View Trial Website
Additional Details

Malignant gliomas are aggressive primary brain tumors that almost always lead to rapid patient deterioration and death. Timely diagnosis of recurrent disease as well as accurate monitoring of therapeutic responses is critically important in glioblastoma patients. Despite introduction of new treatment approaches patient prognosis is poor with less than half of the patients being progression-free during the first 6 months after diagnosis of disease recurrence (6-month-progression-free survival rates of 46%). The current diagnostic standard of care for diagnosing and monitoring brain tumors is contrast-enhanced, multi-planar magnetic resonance imaging (MRI). However, the ability of MRI for early detection of disease recurrence or progression is limited. Moreover, determination of treatment responses is difficult since benign tissue changes after radiation and/or chemotherapy can have the appearance of tumor recurrence or progression on MRI. Positron emission tomography (PET) is an established imaging technique that utilizes small amounts of radioactivity attached to very minimal amounts of substances (tracers) that are injected via a hand or arm vein. These substances can track certain features of cancers that can be visualized by using the PET/CT scanner. For instance, a number of different PET-tracers have been used to study brain tumor metabolism and to detect primary or recurrent tumors. These include tracers of glucose (18F-FDG) and amino acid metabolism (e.g. 18F-DOPA). Metabolic imaging of brain tumors with amino acid analogues has advantages over 18F-FDG. Since FDG assess glucose metabolism and the normal brain consumes a lot of glucose it can be difficult to detect tumors against high glucose use of normal brain tissue. 18FDOPA has been successfully used clinically for many years. The advantage of 18F-DOPA is that normal brain tissue consumes very little 18F-DOPA. Thus, tumors can be seen easily against a low background activity. 18F-DOPA PET imaging detects brain tumors with a very high accuracy and 18F-DOPA imaging affects the management of 40% of patients. However, its impact on patient outcome defined as survival, costs, and/or quality of life has not been demonstrated. Randomized trials are needed to evaluate the impact of PET on patient management and outcome. We will determine this by randomizing patients with suspected recurrence of glioblastoma into those who are managed using conventional diagnostic imaging versus those who will receive conventional imaging plus 18F-DOPA PET. Randomization is like flipping a coin. Patients will have a 50% chance to undergo standard imaging or standard imaging combined with 18F-DOPA PET. Approximately 25-40% of the patients with suspected tumor recurrence will have pseudo-progression on MRI (i.e. the images suggest that there is tumor recurrence when there is in fact no recurrence). These patients will have correctly negative 18F-DOPA PET scans. In these patient initiation of treatment can be postponed. In contrast, patients with positive 18F-DOPA PET scans will undergo some kind of treatment at the discretion of the treating physician (radiation therapy, chemotherapy or surgery). We will find out whether the management and treatment change that is based on 18FDOPA PET affects the survival of patients and affects the costs of caring for the patients.

Arms & Interventions

Arms

No Intervention: Standard Diagnostics without PET

Experimental: Diagnostics with PET

All 18F-DOPA PET/CT studies will be interpreted qualitatively during a clinical readout session. Based on a previous study scans will be classified as positive if tumor regions defined on CT exhibited tracer uptake above the level of the contra-lateral caudate nucleus. Scans will be classified as negative if tumor 18F-FDOPA uptake is lower than that of the contra lateral caudate nucleus. Uptake at the level of the contra-lateral caudate will be considered equivocal for malignancy.

Interventions

Radiation: - FDOPA PET/CT

Positron emission tomography (PET) is an established imaging technique that utilizes small amounts of radioactivity attached to very minimal amounts of substances (tracers) that are injected via a hand or arm vein. These substances can track certain features of cancers that can be visualized by using the PET/CT scanner, in this instance the amino acid 18F-DOPA.

Contact a Trial Team

If you are interested in learning more about this trial, find the trial site nearest to your location and contact the site coordinator via email or phone. We also strongly recommend that you consult with your healthcare provider about the trials that may interest you and refer to our terms of service below.

UCLA, Los Angeles, California

Status

Address

UCLA

Los Angeles, California, 90095