cropped color_logo_with_background.png

Glioblastoma: Validation and Comparison Between Primary Tumor and Its Murine Model

Study Purpose

Despite maximal safe surgery followed by combined chemo-radiation therapy, the outcome of patients suffering from glioblastoma (GBM) remains extremely poor with a median survival of 15 months. Hence, new avenues have to be taken to improve outcome in this devastating disease. Given their intracerebral localization and their highly invasive features, GBM pose some specific challenges for the development of adequate tumor models. Orthotopic xenograft models directly derived from the tumor of a patient might represent an attractive perspective to develop patient-specific targeted therapies. This approach remains however to be validated for GBM as it offers specific challenges, including the demonstration that the properties of xenograft models validly represent treatment relevant features of the respective human tumors. In this innovative project the investigators aim to compare and validate an approach of paired human GBM and respective derived orthotopic xenografts in the mouse brain on the levels of radiological behavior and metabolism of the tumors, as determined by high resolution MRI of the patients (7T MRI) and the respective orthotopic mouse xenografts (14.1T MRI), as well as on the level of the transcriptome, genome, and methylome of the original GBM tissue and respective derived xenografts/glioma sphere lines. The data will be integrated in multidimensional analyses and interrogated for similarities and associations with molecular GBM subtype. This pilot project will provide the basis for the crucial next steps, which will include drug intervention studies. New promising drugs, tested pre-clinically in the mouse orthotopic xenograft models established here using the radiologic/metabolic/molecular procedures described for this project, will be taken into patients in phase 0 studies. GBM patients will receive radiologic/metabolic follow-up using high resolution MRI under drug treatment, followed by resection of the tumor and subsequent acquisition of molecular data.

Recruitment Criteria

Accepts Healthy Volunteers

Healthy volunteers are participants who do not have a disease or condition, or related conditions or symptoms

No
Study Type

An interventional clinical study is where participants are assigned to receive one or more interventions (or no intervention) so that researchers can evaluate the effects of the interventions on biomedical or health-related outcomes.


An observational clinical study is where participants identified as belonging to study groups are assessed for biomedical or health outcomes.


Searching Both is inclusive of interventional and observational studies.

Interventional
Eligible Ages 18 Years and Over
Gender All
More Inclusion & Exclusion Criteria

Inclusion Criteria:

  • - High level of suspicion of glioblastoma.
  • - Planned neurosurgical resection.
  • - Adequate bone marrow function.
  • - Adequate liver and kidney function.

Exclusion Criteria:

  • - inability to undergo MRI.
- inability to undergo neurosurgical resection

Trial Details

Trial ID:

This trial id was obtained from ClinicalTrials.gov, a service of the U.S. National Institutes of Health, providing information on publicly and privately supported clinical studies of human participants with locations in all 50 States and in 196 countries.

NCT02904525
Phase

Phase 1: Studies that emphasize safety and how the drug is metabolized and excreted in humans.

Phase 2: Studies that gather preliminary data on effectiveness (whether the drug works in people who have a certain disease or condition) and additional safety data.

Phase 3: Studies that gather more information about safety and effectiveness by studying different populations and different dosages and by using the drug in combination with other drugs.

Phase 4: Studies occurring after FDA has approved a drug for marketing, efficacy, or optimal use.

N/A
Lead Sponsor

The sponsor is the organization or person who oversees the clinical study and is responsible for analyzing the study data.

Andreas Hottinger
Principal Investigator

The person who is responsible for the scientific and technical direction of the entire clinical study.

Andreas F Hottinger, MD-PhD
Principal Investigator Affiliation CHUV Lausanne University Hospital
Agency Class

Category of organization(s) involved as sponsor (and collaborator) supporting the trial.

Other
Overall Status Unknown status
Countries Switzerland
Conditions

The disease, disorder, syndrome, illness, or injury that is being studied.

Glioblastoma
Additional Details

The presented project will focus on the evaluation of a multimodal approach comparing human GBM to paired samples of orthotopic xenografts using high resolution MRI and MRS and multidimensional molecular profiling. 20 patients with a high probability for newly diagnosed GBM based on MRI-scan ( 3 Tesla (3T) MRI, T1, T2, T1 gadolinium, DWI & MRI Spectroscopy) will be identified in the CHUV prior to undergoing neurosurgical resection. Patients will undergo extensive experimental radiological examination using specific MRI sequences on the 7 Tesla (7T) MRI to identify specific metabolic pathways (see below, section on imaging). Thereafter patients will undergo maximal safe neurosurgical resection of their tumors. The portion of the tumor that is not used for diagnostic purposes will be collected immediately for further use (see below, section on molecular evaluations). Following resection, patients will undergo standard of care treatment [usually combined radio-chemotherapy, or will be offered participation in a clinical trial. The clinical parameters will be collected, including histopathological features and the evolution and growth pattern of the residual tumor (if present), or the development of recurrences will thereafter be compared to the parameters and evolution of the xenograft models. At high magnet field strength (7T), high signal-to-noise ratio and increased spectral dispersion allow more reliable measurement of a large number of metabolites using Magnetic Resonance Spectroscopy in comparison to clinical available field strengths (3T and below). In addition, the authors have developed a full sensitivity short-echo-time single voxel spectroscopy (SVS) sequence "semi-adiabatic SPECIAL"(2) which was implemented, validated at 7T and allows the quantification of 15 metabolites with high precision including N-acetylaspartate(NAA), glutamine(Gln), glutamate(Glu), myo-inositol(Ins), phosphorylethanolamine(PE), total choline(tCho), creatine, phosphocreatine, N-acetylaspartylglutamate(NAAG), lactate(Lac), glutathione(GSH), aspartate (Asp), taurine(Tau), scyllo-inositol and γ-aminobutyric acid(GABA). This localization technique was further extended to a MR Spectroscopic Imaging (MRSI) technique at 7T, which allows mapping of the spatial distributions of cerebral metabolites. Furthermore, glycine is a possible marker for tumor malignancy and its detection in vivo has been established in our previous study using TE=30ms with SPECIAL sequence at 7T. Therefore, in this study the aforementioned techniques will be used to obtain the neurochemical information and its spatial distribution in the glioblastoma of the patients. These data will be further compared with the neurochemical information obtained in the orthotopic xenografts in the mouse brain derived from the respective glioblastoma patient. All MRS measurements of glioblastoma patients will be performed on a 7T MR scanner with a CP Transmit / 32 channel receive array head coil. Based on the high resolution T1-weighted images obtained using the MP2RAGE sequence, Volume of Interest (VOI) for spectroscopy will be placed according to the location of the glioblastoma. Total acquisition time of MRS will be within 30 min. In vivo MRS spectra will be post-processed and metabolite concentrations will be quantified to create metabolite maps. Molecular and functional investigations of paired samples of primary glioblastoma and respective orthotopic xenografts in the mouse.The aim of the present study is to determine the molecular, histopathological, and functional properties, including growth patterns such as invasiveness, of the original GBM and the respective derived orthotopic xenografts in the mouse, and link them to imaging/ metabolism parameters obtained by high resolution MRI. GBM samples from patients collected at surgery will be divided into 2 parts, (i) snap frozen for molecular analyses, and (ii) cultivated under stem cell conditions for subsequent stereotactic transplantation into male immune-compromised mice and establishment of sphere lines.

Arms & Interventions

Arms

Experimental: 7T MRI + high resolution spectroscopy

Next to routine imaging, patients undergo an additional 7 tesla MRI for high resolution spectroscopy

Interventions

Device: - 7 Tesla MRI, no contrast agent

Patients with newly diagnosed glioblastoma undergo a 7Tesla MRI

Contact a Trial Team

If you are interested in learning more about this trial, find the trial site nearest to your location and contact the site coordinator via email or phone. We also strongly recommend that you consult with your healthcare provider about the trials that may interest you and refer to our terms of service below.

International Sites

CHUV, University Hospital Lausanne, Lausanne, VD, Switzerland

Status

Recruiting

Address

CHUV, University Hospital Lausanne

Lausanne, VD, 1066

Site Contact

Andreas F Hottinger, MD, PhD

[email protected]

+41 21 314 0168