-
A Study Evaluating Temferon in Patients with Glioblastoma & Unmethylated MGMT
This is a non-randomized, open label, phase I/IIa, dose-escalation study, involving a single injection of Temferon, an investigational advanced therapy consisting of autologous CD34+-enriched hematopoietic stem and progenitor cells exposed to transduction with a lentiviral vector driving myeloid specific interferon-alpha2 expression, which will be administered to up to 27 patients affected by GBM who have an unmethylated MGMT promoter. Part A will evaluate the safety and tolerability of 5 escalating doses of Temferon and 3 different conditioning regimens in up to 27 patients, following first line treatment.
-
A Study of BL-B01D1 in Patients With Recurrent Glioblastoma
This is an open-label, multicenter, phase II study to evaluate the safety, efficacy, and pharmacokinetic characteristics of BL-B01D1 for Injection in patients with recurrent glioblastoma.
-
A Study of Chlorophyllin for the Management of Brain Radio-necrosis in Patients With Diffuse Glioma
Diffuse gliomas are common tumors involving the brain. They are usually treated by surgery followed by radiation and chemotherapy. Radiotherapy is used for the treatment of brain tumors which causes damage to the tumor cells. However, radiotherapy can also affect the surrounding healthy cells in the brain, causing inflammation and swelling in the region, which is known as radio necrosis (RN). This is considered a late side effect of radiation and is seen in 10-25% of patients treated with radiation for brain tumors. Sometimes, radionecrosis can be detected on routine imaging during follow-up without new symptoms (asymptomaticRN). At the same time, in some patients, it can give...
-
A Study of Debio 0123 in Combination With Temozolomide in Adult Participants With Recurrent or Progressive Glioblastoma and of Debio 0123 in Combination With Temozolomide and Radiotherapy in Adult Participants With Newly Diagnosed Glioblastoma
The primary purpose of the Phase 1 (Dose Escalation) of this study is to identify the dose-limiting toxicities (DLTs) of Debio 0123 combined with temozolomide (TMZ) (Arm A) and with TMZ and radiotherapy (RT) (Arms B and C) and to characterize the safety and tolerability of these combinations in adult participants with glioblastoma (GBM). Arm B which was previously added to the protocol, has been permanently halted per the safety monitoring committees' decision on the safety findings of this arm. The primary purpose of Phase 1 (Dose expansion) of the study is to assess the doses studied under Phase 1 (Dose Escalation) Arm A and identify the recommended dose (RD) for further...
-
A Study of Repotrectinib in Pediatric and Young Adult Subjects Harboring ALK, ROS1, OR NTRK1-3 Alterations
Phase 1 will evaluate the safety and tolerability at different dose levels of repotrectinib in pediatric and young adult subjects with advanced or metastatic malignancies harboring anaplastic lymphoma kinase (ALK), receptor tyrosine kinase encoded by the gene ROS1 (ROS1), or neurotrophic receptor kinase genes encoding TRK kinase family (NTRK1-3) alterations to estimate the Maximum Tolerated Dose (MTD) or Maximum Administered Dose (MAD) and select the Pediatric Recommended Phase 2 Dose (RP2D). Phase 2 will determine the anti-tumor activity of repotrectinib in pediatric and young adult subjects with advanced or metastatic malignancies harboring ROS1 or NTRK1-3 alterations.
-
A Study of RNA-lipid Particle (RNA-LP) Vaccines for Newly Diagnosed Pediatric High-Grade Gliomas (pHGG) and Adult Glioblastoma (GBM)
The primary objective will be to demonstrate the manufacturing feasibility and safety, and to determine the maximum tolerated dose (MTD) of RNA-LP vaccines in (Stratum 1) adult patients with newly diagnosed GBM (MGMT low level or unmethylated in adults only) and (Stratum 2) in pediatric patients with newly diagnosed HGG (pHGG). Funding Source - FDA OOPD
-
A Study of Temodar With Abexinostat (PCI-24781) for Patients With Recurrent Glioma
Glioblastoma (GBM), WHO grade IV glioma, represents the majority of adult malignant primary brain tumors, with an incidence of 2-3 per 100,000 person-years. The survival for GBM has increased in the last decade but is still low with a median survival of 15-18 months. Recurrence after initial standard therapy, radiation therapy and chemotherapy with temozolomide, few options are available. Even with further therapy, median progression free survival at 6 months after first relapse (PFS-6) is only 15%. Similarly, anaplastic astrocytoma and anaplastic oligodendroglioma, grade III gliomas, once recurrent after radiation therapy and first-line chemotherapy, have identical...
-
A Study of the Drug Selinexor With Radiation Therapy in Patients With Newly-Diagnosed Diffuse Intrinsic Pontine (DIPG) Glioma and High-Grade Glioma (HGG)
This phase I/II trial tests the safety, side effects, and best dose of selinexor given in combination with standard radiation therapy in treating children and young adults with newly diagnosed diffuse intrinsic pontine glioma (DIPG) or high-grade glioma (HGG) with a genetic change called H3 K27M mutation. It also tests whether combination of selinexor and standard radiation therapy works to shrink tumors in this patient population. Glioma is a type of cancer that occurs in the brain or spine. Glioma is considered high risk (or high-grade) when it is growing and spreading quickly. The term, risk, refers to the chance of the cancer coming back after treatment. DIPG is a subtype of...
-
A Study of the Treatment of Recurrent Malignant Glioma With rQNestin34.5v.2
This research study is evaluating an investigational drug, an oncolytic virus called rQNestin34.5v.2. This research study is a Phase I clinical trial, which tests the safety of an investigational drug and also tries to define the appropriate dose of the investigational drug as a possible treatment for this diagnosis of recurrent or progressive brain tumor.
-
A Study to Assess the Safety and Tolerability of AZD1390 Given With Radiation Therapy in Patients With Brain Cancer
This study will test an investigational drug called AZD1390 in combination with radiation therapy for the treatment of brain tumors. This is the first time AZD1390 is being given to patients. This study will test safety, tolerability and PK (how the drug is absorbed, distributed and eliminated) of ascending doses of AZD1390 in combination with distinct regimens of radiation therapy