
-
B7-H3 CAR-T for Recurrent or Refractory Glioblastoma
This is a randomized, parallel-arm, phase I/II study to evaluate the safety and efficacy of B7-H3 CAR-T in between Temozolomide cycles comparing to Temozolomide alone in treating patients with glioblastoma that has come back or does not respond to the standard treatment. The antigen B7-H3 is highly expressed in glioblastoma of a subset of patients. B7-H3 CAR-T, made from isolated patient peripheral blood mononuclear cells, can specifically attack patient glioblastoma cells that expressing B7-H3.
-
B7-H3 Chimeric Antigen Receptor T Cells (B7-H3CART) in Recurrent Glioblastoma Multiforme
This is an open label, non-randomized, single site Phase I study to test the manufacturing feasibility and safety of locoregional (LR) administration of B7-H3CART into the central nervous system of adult subjects with recurrent IDH wild-type GBM using a standard 3+3 dose escalation design.
-
BC008-1A Injection for Recurrent CNS WHO G4 Glioma
The purpose of this Phase I clinical study is to evaluate the safety, preliminary efficacy and pharmacokinetic characteristics of BC008-1A injection in subjects with recurrent CNS WHO grade 4 glioma. This is a randomized and open-label study, with two dose groups set up, and 10 to 20 subjects will be enrolled in each group.
-
Bevacizumab Neoadjuvant Therapy for New High-grade Gliomas in the Brain
Glioblastoma (GBM) usually grows in a diffuse fashion and infiltrates the surrounding brain. The inability to completely excise the tumor often leads to tumor recurrence within a few months of the initial surgery, which ultimately results in the death of the GBM patient.GBM histologically appears to be a tumor of vascular origin characterized by necrosis and microvascular proliferation, and neoangiogenesis is a key factor in the growth and poor prognosis of GBM. Bevacizumab can inhibit the biological effects of VEGF, including the permeability and proliferation of blood vessels, as well as the migration and survival of endothelial cells, so as to inhibit tumor angiogenesis, growth...
-
BGB-290 and Temozolomide in Treating Isocitrate Dehydrogenase (IDH)1/2-Mutant Grade I-IV Gliomas
This phase I trial studies the side effects and best dose of BGB-290 and temozolomide in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma that is newly diagnosed or has come back. BGB-290 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BGB-290 and temozolomide may work better in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma.
-
Biologic Association Between Metabolic Magnetic Resonance-positron Emission Tomograph (MR-PET) and Tissue Measures of Glycolysis in Brain Tumors of Infiltrating Glioblastoma Cells
The purpose of this project is to validate a new combined MRI and PET imaging technique as a biomarker or measure of glycolysis in brain tumors. To accomplish this, the investigators propose obtaining image-guided measures of tissue pH and biopsied tissue in tumor areas selected for bulk resection surgery. Investigators will then correlate the imaging measurements with pH, RNA expression, protein expression, and bioenergetics measurements of key glycolytic enzymes.
-
Blood-Brain Barrier Disruption (BBBD) for Liquid Biopsy in Subjects with GlioBlastoma Brain Tumors
The purpose of this study is to evaluate the safety and efficacy of targeted blood brain barrier disruption with Exablate Model 4000 Type 2.0/2.1 for liquid biopsy in subjects with suspected Glioblastoma brain tumors
-
Bortezomib and Temozolomide in Recurrent Grade-4 Glioma Unmethylated MGMT Promoter (BORTEM-17)
This phase IB/II trial is designed to investigate the safety and survival benefits for patients with recurrent grade-4 with unmethylated MGMT promoter treated with Bortezomib and Temozolomide in a specific schedule.
-
Carmustine Wafer in Combination With Retifanlimab and Radiation With/Without Temozolomide in Subjects With Glioblastoma
The purpose of the study is to evaluate the safety and survival of carmustine wafers and radiation and retifanlimab with or without temozolomide (TMZ) in newly-diagnosed adult subjects with glioblastoma multiform after carmustine wafer placement.
-
CARv3-TEAM-E T Cells in Glioblastoma
The goal of this research study is to determine the best dose of CARv3-TEAM-E T Cells for treating participants with glioblastoma. The name of the treatment intervention used in this research study is: -CARv3-TEAM-E T Cells (or Autologous T lymphocytes).