
-
BGB-290 and Temozolomide in Treating Isocitrate Dehydrogenase (IDH)1/2-Mutant Grade I-IV Gliomas
This phase I trial studies the side effects and best dose of BGB-290 and temozolomide in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma that is newly diagnosed or has come back. BGB-290 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BGB-290 and temozolomide may work better in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma.
-
Biologic Association Between Metabolic Magnetic Resonance-positron Emission Tomograph (MR-PET) and Tissue Measures of Glycolysis in Brain Tumors of Infiltrating Glioblastoma Cells
The purpose of this project is to validate a new combined MRI and PET imaging technique as a biomarker or measure of glycolysis in brain tumors. To accomplish this, the investigators propose obtaining image-guided measures of tissue pH and biopsied tissue in tumor areas selected for bulk resection surgery. Investigators will then correlate the imaging measurements with pH, RNA expression, protein expression, and bioenergetics measurements of key glycolytic enzymes.
-
Blood-Brain Barrier Disruption (BBBD) for Liquid Biopsy in Subjects with GlioBlastoma Brain Tumors
The purpose of this study is to evaluate the safety and efficacy of targeted blood brain barrier disruption with Exablate Model 4000 Type 2.0/2.1 for liquid biopsy in subjects with suspected Glioblastoma brain tumors
-
Bortezomib and Temozolomide in Recurrent Grade-4 Glioma Unmethylated MGMT Promoter (BORTEM-17)
This phase IB/II trial is designed to investigate the safety and survival benefits for patients with recurrent grade-4 with unmethylated MGMT promoter treated with Bortezomib and Temozolomide in a specific schedule.
-
Carmustine Wafer in Combination With Retifanlimab and Radiation With/Without Temozolomide in Subjects With Glioblastoma
The purpose of the study is to evaluate the safety and survival of carmustine wafers and radiation and retifanlimab with or without temozolomide (TMZ) in newly-diagnosed adult subjects with glioblastoma multiform after carmustine wafer placement.
-
CARv3-TEAM-E T Cells in Glioblastoma
The goal of this research study is to determine the best dose of CARv3-TEAM-E T Cells for treating participants with glioblastoma. The name of the treatment intervention used in this research study is: -CARv3-TEAM-E T Cells (or Autologous T lymphocytes).
-
Chemo-immunotherapy Using Ibrutinib Plus Indoximod for Patients With Pediatric Brain Cancer
Recent lab-based discoveries suggest that IDO (indoleamine 2,3-dioxygenase) and BTK (Bruton's tyrosine Kinase) form a closely linked metabolic checkpoint in tumor-associated antigen-presenting cells. The central clinical hypothesis for the GCC2020 study is that combining ibrutinib (BTK-inhibitor) with indoximod (IDO-inhibitor) during chemotherapy will synergistically enhance anti-tumor immune responses, leading to improvement in clinical response with manageable overlapping toxicity. GCC2020 is a prospective open-label phase 1 trial to determine the best safe dose of ibrutinib to use in combination with a previously studied chemo-immunotherapy regimen, comprised of the...
-
Chemoradiotherapy Versus Biomarker-Guided Therapy for Elderly and Frail GBM Patients
Currently, the optimal treatment regimen for elderly Glioblastoma (GBM) patients with poor performance status (PS) is unknown. Based on data for elderly GBM patients and the limited data for patients with poor PS, hypofractionated RT or a short course of Temozolomide (TMZ) may provide survival benefit without the added toxicity and inconvenience of a more protracted treatment regimen. In particular, treatment with RT or TMZ monotherapy on the basis of methylated O6 - methyl guanine - DNA methyltransferase (MGMT) promoter methylation status, followed by the alternative therapy at progression, may provide a safe and effective treatment regimen for patients with poor PS. The...
-
Chemotherapy and Radiation Therapy for the Treatment of IDH Wildtype Gliomas or Non-histological (Molecular) Glioblastomas
This phase II trial studies how well temozolomide and radiation therapy work in treating patients with IDH wildtype historically lower grade gliomas or non-histological molecular glioblastomas. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving chemotherapy with radiation therapy may kill more tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. The goal of this clinical research study is to compare receiving new radiation therapy doses and volumes to the prior standard treatment for...
-
Chronic CED of TPT for Recurrent Malignant Glioma
The primary goal of this study is to establish the safety of chronic Convection Enhanced Delivery (CED) of the chemotherapeutic drug Topotecan for patients with recurrent malignant glioma that harbors the Isocitrate Dehydrogenase mutation (IDH-mut). The secondary goal of the study is to study drug distribution and assess the tumor response to prolonged continuous CED of Topotecan. Convection Enhanced Delivery is a novel method of drug delivery that allows administration of a drug directly to the brain. In CED, a drug pump is placed under the skin in the chest or abdominal region. The pump is connected to a catheter that is tunneled underneath the skin to the brain. The tip of...