
-
A Study to Evaluate the Efficacy and Safety of TJ107 in Lympopenic Patients With Newly Diagnosed Glioblastoma Who Completed Standard Concurrent Chemoradiotherapy (CCRT)
A Phase 2, Randomized, Single-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of TJ107 in Lympopenic Patients with Newly Diagnosed Glioblastoma Who Completed Standard Concurrent Chemoradiotherapy (CCRT)
-
A Study Using Radiation Therapy and Temozolomide to Treat Glioblastoma in Patients Over 70
In this study we propose to determine outcomes of patients age 70 or older treated with radiation over 2 weeks given with temozolomide 75 mg/m2 daily during radiotherapy and as a post radiation treatment of 150 mg/m2 - 200 mg /m2 for 6 cycles or until the disease progresses.
-
Atezolizumab in Combination With Temozolomide and Radiation Therapy in Treating Patients With Newly Diagnosed Glioblastoma
This phase I/II trial studies the side effects and how well atezolizumab works in combination with temozolomide and radiation therapy in treating patients with newly diagnosed glioblastoma. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy beams to kill tumor cells and shrink tumors. It is not yet known how...
-
A Trial of Belzutifan (PT2977, MK-6482) Tablets In Patients With Advanced Solid Tumors (MK-6482-001)
The primary objective of this study is to identify the maximum tolerated dose (MTD) of belzutifan Tablets and/or the recommended Phase 2 dose (RP2D) of belzutifan Tablets in patients with advanced solid tumors
-
A Trial of Ipatasertib in Combination With Atezolizumab
This is a single centre, proof-of-concept phase I trial of atezolizumab in combination with ipatasertib. There are two parts to this study, the dose escalation phase (Part A) and the dose expansion phase (Part B). Part A, will determine the maximum tolerated dose (MTD) and recommended Phase II dose (RP2D). This will be followed by the Part B dose expansion phase to further characterise the safety and tolerability and to assess the pharmacodynamic activity of the combination.
-
Azeliragon and Chemoradiotherapy in Newly Diagnosed Glioblastoma
This is an open label study to determine the safety and preliminary evidence of a therapeutic effect of azeliragon in patients with newly diagnosed glioblastoma receiving concurrent radiation and temozolomide.
-
Azeliragon in MGMT Unmethylated Glioblastoma
This is a phase 2 study to evaluate the safety and preliminary evidence of effectiveness of azeliragon, in combination with radiation therapy, as an initial treatment of a form of glioblastoma. Glioblastoma is a type of brain cancer that grows quickly and can invade and destroy healthy tissue. There's no cure for glioblastoma, which is also known as glioblastoma multiforme. Treatments, including surgery, radiation, and chemotherapy might slow cancer growth and reduce symptoms. New treatments of glioblastoma are needed.
-
Bevacizumab Alone Versus Dose-dense Temozolomide Followed by Bevacizumab for Recurrent Glioblastoma, Phase III
The aim of this Phase III study is to evaluate the superiority of dose-dense temozolomide (ddTMZ) followed by bevacizumab at ddTMZ failure for glioblastoma at first recurrence or progression, comparing to bevacizumab alone.
-
Brain Tumor-Specific Immune Cells (IL13Ralpha2-CAR T Cells) for the Treatment of Leptomeningeal Glioblastoma, Ependymoma, or Medulloblastoma
This phase I trial investigates the side effects of brain tumor-specific immune cells (IL13Ralpha2-CAR T cells) in treating patients with leptomeningeal disease from glioblastoma, ependymoma, or medulloblastoma. Immune cells are part of the immune system and help the body fight infections and other diseases. Immune cells can be engineered to destroy brain tumor cells in the laboratory. IL13Ralpha2-CAR T cells is brain tumor specific and can enter and express its genes in immune cells. Giving IL13Ralpha2-CAR T cells may better recognize and destroy brain tumor cells in patients with leptomeningeal disease from glioblastoma, ependymoma or medulloblastoma.
-
Capecitabine + Bevacizumab in Patients With Recurrent Glioblastoma
This study involves participants with recurrent glioblastoma brain tumors (GBM). This means that a participant's brain tumor has either returned after being treated by a previous therapy, or has continued to progress despite being treated. The purpose of this study is to provide proof of concept that suppression of MDSCs (myeloid-derived suppressor cells) is feasible in patients with GBM. Rather than targeting tumor cells or immune checkpoints, which has been the focus of recent therapeutic efforts, direct targeting of MDSCs with low dose capecitabine has the potential to reverse the immunosuppressed microenvironment of GBM and thereby reduce tumors