
-
Expert Consensus and Artificial Intelligence in Medical Decision Making in Patients with Malignant Brain Tumors
Nearly 23,000 adults are diagnosed with primary central nervous system (CNS) malignancy yearly. An additional 200,000 adults are diagnosed with brain metastasis. There are significant variations in CNS tumor treatment. However, due to significant heterogeneity in patient baseline factors, identifying unwarranted variation is challenging. Ghogawala et al have previously demonstrated that, among patients undergoing surgical treatment of cervical myelopathy and lumbar degenerative spinal disease, an expert panel consisting of surgeon experts can identify variations in proposed surgical procedure and demonstrated superior patient outcomes when the surgery performed matched the...
-
Feasibility of Individualized Therapy for Recurrent Glioblastoma
The current study will test the ability and likelihood of successfully implementing individualized combination treatment recommendations for adult patients with surgically-resectable recurrent glioblastoma in a timely fashion. Collected tumor tissue and blood will be examined using a new diagnostic testing called University of California, San Francisco (UCSF) 500 Cancer Gene Panel which is done at the UCSF Clinical Cancer Genomics Laboratory. The UCSF 500 Cancer Gene Panel will help identify genetic changes in the DNA of a patient's cancer, which helps oncologists improve treatment by identifying targeted therapies.
-
Ferumoxytol MRI in Assessing Response to Pembrolizumab in Patients With Glioblastoma
This pilot phase II trial studies how well ferumoxytol magnetic resonance imaging (MRI) works in assessing response to pembrolizumab in patients with glioblastoma. Diagnostic procedures, such as ferumoxytol MRI, may help measure a patient's response to pembrolizumab treatment.
-
Fimepinostat in Treating Brain Tumors in Children and Young Adults
This trial studies how well fimepinostat works in treating patients with newly diagnosed diffuse intrinsic pontine glioma, or medulloblastoma, or high-grade glioma that have come back. Fimepinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
-
Fluorine F 18 Fluorodopa-Labeled PET Scan in Planning Surgery and Radiation Therapy in Treating Patients With Newly Diagnosed High- or Low-Grade Malignant Glioma
RATIONALE: New imaging procedures, such as fluorine F 18 fluorodopa-labeled PET scan, may help in guiding surgery and radiation therapy and allow doctors to plan better treatment. PURPOSE: This clinical trial studies fluorine F 18 fluorodopa-labeled PET scan in planning surgery and radiation therapy in treating patients with newly diagnosed high- or low-grade malignant glioma
-
Genetically Engineered HSV-1 Phase 1 Study for the Treatment of Recurrent Malignant Glioma
To determine the safety and tolerability of the maximum dose for laboratory engineered Herpes Simplex Virus-1 in patients who would not be eligible for surgical resection of recurrent glioma To determine the safety and tolerability of the maximum dose for laboratory engineered Herpes Simples Virus-1 in patients who would benefit from surgical resection of recurrent glioma
-
Genetically Modified T-cells in Treating Patients With Recurrent or Refractory Malignant Glioma
This phase I trial studies the side effects and best dose of genetically modified T-cell immunotherapy in treating patients with malignant glioma that has come back (recurrent) or has not responded to therapy (refractory). A T cell is a type of immune cell that can recognize and kill abnormal cells in the body. T cells are taken from the patient's blood and a modified gene is placed into them in the laboratory and this may help them recognize and kill glioma cells. Genetically modified T-cells may also help the body build an immune response against the tumor cells.
-
Glioblastoma Treatment With Irradiation and Olaptesed Pegol (NOX-A12) in MGMT Unmethylated Patients
The purpose of this study is to obtain first, exploratory information on the safety and efficacy of (i) olaptesed pegol in combination with radiation therapy in patients with newly diagnosed glioblastoma of unmethylated MGMT promoter status either not amenable to resection (biopsy only) or after incomplete tumor resection, and (ii) olaptesed pegol in combination with radiation therapy and bevacizumab in patients with newly diagnosed glioblastoma of unmethylated MGMT promoter status either not amenable to resection (biopsy only) or after incomplete or complete tumor resection. Further arms are included (i) to establish safety for the combination of olaptesed pegol at three...
-
Glioma Microenvironment an Exploratory Study
Diffuse glioms are primary brain tumors characterized by infiltrative growth and high heterogeneity, which render the disease mostly incurable. Advances in genetic analysis revealed that molecular and epigenetic alterations predict patients´s overall survival and clinical outcome. However, glioma tumorigenicity is not exclusively caused by its genetic alterations. The crosstalk between tumor cells and the surrounding microenvironment plays a crucial role in modulating glioma growth and aggressiveness. In this sense, to understand the tumor microenvironment would elucidate potential treatment alternatives. The focus will be to evaluate myeloid cells and cytokines levels.
-
GX-I7 in Combination With Bevacizumab in Recurrent Glioblastoma (GBM) Patients
The purpose of this study is to evaluate the efficacy and safety of GX-I7 in combination with bevacizumab in subjects with recurrent glioblastoma.