
-
Metabolic Therapy Program In Conjunction With Standard Treatment For Glioblastoma
Glioblastoma (GBM), a very aggressive brain tumour, is one of the most malignant of all cancers and is associated with a poor prognosis. The majority of GBM cells display damaged mitochondria (the "batteries" of cells), so they rely on an alternate method for producing energy called the Warburg Effect, which relies nearly exclusively on glucose (in contrast, normal cells can use other molecules, such as fatty acids and fat-derived ketones, for energy). Metabolic interventions, such as fasting and ketogenic diets, target cancer cell metabolism by enhancing mitochondria function, decreasing blood glucose levels, and increasing blood ketone levels, creating an advantage for...
-
Metformin, Neo-adjuvant Temozolomide and Hypo- Accelerated Radiotherapy Followed by Adjuvant TMZ in Patients With GBM
Glioblastoma Multiforme is one of the most common, and unfortunately one of the most aggressive brain tumors in adults with most of the patients recurring and dying of the disease with a median survival of 16 months from diagnosis. Current treatment for patients with newly diagnosed Glioblastoma Multiforme (GBM) is safe maximal surgical resection followed by concomitant conventional Radiotherapy (RT) delivered in 6 weeks + Temozolomide (TMZ) followed by TMZ for 6 to 12 cycles. Recent scientific research has shown that Metformin, a common drug used to treat diabetes mellitus, may improve the results of the treatment in patients with a variety of cancers, such as breast, colon,...
-
Mind-Body Intervention in Glioma Couples
This trial studies how well a couple-based mind body program works in improving spiritual, psychosocial, and physical quality of life in patients with high or low grade glioma or tumors that have spread to the brain and their partners. A couple-based mind body program may help to improve spiritual well-being, sleep difficulties, depressive symptoms, and overall quality of life in patients with glioma or tumors that have spread to the brain and their partners.
-
MRSI to Predict Response to RT/TMZ ± Belinostat in GBM
In the first phase of this study (Cohort 1), the investigators will determine the feasibility of adding MRSI to the evaluation of newly-diagnosed GBM patients treated with standard RT/TMZ and determine whether magnetic resonance spectroscopic imaging (MRSI) can predict for better outcomes in these patients. In the second phase of this study (Cohorts 2a and 2b), the investigators will find the maximum tolerated dose of belinostat for treating newly-diagnosed GBM patients with standard RT/TMZ and will determine whether MRSI can aid clinicians in the early determination of response to this new therapy.
-
Mycophenolate Mofetil Combined With Radiation Therapy in Glioblastoma
This is a phase 0/1 dose-escalation trial to determine the maximum tolerated dose of Mycophenolate Mofetil (MMF) when administered with radiation, in patients with glioblastoma or gliosarcoma.
-
Neoantigen-based Personalized DNA Vaccine in Patients With Newly Diagnosed, Unmethylated Glioblastoma
This is a single institution, open-label, single arm, study assessing the safety, feasibility, and immunogenicity of a personalized neoantigen-based vaccine in subjects with newly diagnosed, unmethylated glioblastoma.
-
Niraparib/TTFields in GBM
Evaluating the efficacy and safety of niraparib and Tumor-Treating Fields (TTFields) in recurrent glioblastoma (GBM).
-
Nivolumab and Temozolomide Versus Temozolomide Alone in Newly Diagnosed Elderly Patients With GBM
This study aims to investigate effect of Nivolumab and Temozolomide vs Temozolomide alone on overall survival in newly diagnosed elderly patients with glioblastoma. Who is it for? You may be eligible to join this study if you are aged 65 years or above, with newly diagnosed histologically confirmed GBM (WHO grade IV glioma including gliosarcoma) following surgery. The study aims to evaluate whether the combination of adjuvant nivolumab with temozolomide improves overall survival outcomes for this patient population. The outcome of the study will help determine the most effective treatment for patients with glioblastoma in the future.
-
Nivolumab, BMS-986205, and Radiation Therapy With or Without Temozolomide in Treating Patients With Newly Diagnosed Glioblastoma
This phase I trial studies the side effects of nivolumab, BMS-986205, and standard radiation therapy with or without temozolomide in treating patients with new diagnosed glioblastoma. Immunotherapy with nivolumab, may induce changes in body?s immune system and may interfere with the ability of tumor cells to grow and spread. BMS-986205 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by...
-
Nivolumab Plus Standard Dose Bevacizumab Versus Nivolumab Plus Low Dose Bevacizumab in GBM
The purpose of this study is to test the effectiveness (how well the drug works), safety and tolerability of an investigational drug called nivolumab (also known as BMS-936558) in glioblastoma (a malignant tumor, or GBM), when added to bevacizumab. Nivolumab is an antibody (a kind of human protein) that is being tested to see if it will allow the body's immune system to work against glioblastoma tumors. Opdivo (nivolumab ) is currently FDA approved in the United States for melanoma (a type of skin cancer), non-small cell lung cancer, renal cell cancer (a type of kidney cancer), Hodgkin's lymphoma but is not approved in glioblastoma. nivolumab may help your immune system detect...