
-
Testing Sunitinib as Potentially Targeted Treatment in Cancers With cKIT Genetic Changes (MATCH - Subprotocol V)
This phase II MATCH treatment trial tests how well sunitinib in treating patients with cancer that has certain genetic changes. Sunitinib is in a class of medications called kinase inhibitors. It is used in patients whose cancer has a certain mutation (change) in the cKIT gene. It works by blocking the action of mutated cKIT that signals cancer cells to multiply. This helps to stop or slow the spread of cancer cells.
-
Testing the Ability of AMG 232 (KRT 232) to Get Into the Tumor in Patients With Brain Cancer
This phase I trial studies the side effects and best dose of navtemadlin in treating patients with glioblastoma (brain cancer) that is newly diagnosed or has come back (recurrent). Navtemadlin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
-
Testing the Addition of the Immune Therapy Drugs, Tocilizumab and Atezolizumab, to Radiation Therapy for Recurrent Glioblastoma
This phase II trial studies the best dose and effect of tocilizumab in combination with atezolizumab and stereotactic radiation therapy in treating glioblastoma patients whose tumor has come back after initial treatment (recurrent). Tocilizumab is a monoclonal antibody that binds to receptors for a protein called interleukin-6 (IL-6), which is made by white blood cells and other cells in the body as well as certain types of cancer. This may help lower the body's immune response and reduce inflammation. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and...
-
Testing the Use of the Immunotherapy Drugs Ipilimumab and Nivolumab Plus Radiation Therapy Compared to the Usual Treatment (Temozolomide and Radiation Therapy) for Newly Diagnosed MGMT Unmethylated Glioblastoma
This phase II/III trial compares the usual treatment with radiation therapy and temozolomide to radiation therapy in combination with immunotherapy with ipilimumab and nivolumab in treating patients with newly diagnosed MGMT unmethylated glioblastoma. Radiation therapy uses high energy photons to kill tumor and shrink tumors. Chemotherapy drugs, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Temozolomide, may not work as well for the treatment of tumors that have the unmethylated MGMT. Immunotherapy with monoclonal antibodies called immune...
-
Testing Trametinib and Dabrafenib as a Potential Targeted Treatment in Cancers With BRAF Genetic Changes (MATCH-Subprotocol H)
This phase II MATCH treatment trial identifies the effects of trametinib and dabrafenib in patients whose cancer has genetic changes called BRAF V600 mutations. Dabrafenib may stop the growth of cancer by blocking BRAF proteins which may be needed for cell growth. Trametinib may stop the growth of cancer cells by blocking MEK proteins which, in addition to BRAF proteins, may also be needed for cell growth. Researchers hope to learn if giving trametinib with dabrafenib will shrink this type of cancer or stop its growth.
-
Testing Trametinib as a Potential Targeted Treatment in Cancers With BRAF Genetic Changes (MATCH-Subprotocol R)
This phase II MATCH treatment trial identifies the effects of trametinib in patients with cancer having genetic changes called BRAF mutations and fusions. Trametinib may block proteins called MEK1 and MEK2, which may be needed for growth of cancer cells that express BRAF mutations. Researchers hope to learn if giving trametinib will shrink this type of cancer or stop its growth.
-
Testing Trametinib as a Potential Targeted Treatment in Cancers With GNAQ or GNA11 Genetic Changes (MATCH-Subprotocol S2)
This phase II MATCH treatment trial identifies the effects of trametinib in patients whose cancer has genetic changes called GNAQ or GNA11 mutations. Trametinib may block proteins called MEK1 and MEK2, which may be needed for cancer cell growth when GNAQ or GNA11 mutations are present. Researchers hope to learn if trametinib will shrink this type of cancer or stop its growth.
-
Testing Trametinib as a Potential Targeted Treatment in Cancers With NF1 Genetic Changes (MATCH-Subprotocol S1)
This phase II MATCH treatment trial identifies the effects of trametinib in patients whose cancer has a has a genetic change called NF1 mutation. Trametinib blocks proteins called MEK1 and MEK2, which may be needed for cancer cell growth when an NF1 mutation is present. Researchers hope to learn if trametinib will shrink this type of cancer or stop its growth.
-
Testing Trastuzumab and Pertuzumab in Patients With Higher Than Normal Copies of the HER2 Gene Found in Their Tumors (MATCH - Subprotocol J)
This phase II MATCH treatment trial tests how well trastuzumab and pertuzumab work in treating patients with HER2-amplified non-breast, non-gastric/gastroesophageal junction, and non-colorectal cancers. Pertuzumab and trastuzumab are monoclonal antibodies and forms of targeted therapy that attach to a receptor protein called HER2. HER2 is found on some cancer cells. When pertuzumab or trastuzumab attach to HER2, the signals that tell the cells to grow are blocked and the tumor cell may be marked for destruction by the body's immune system. Trastuzumab is approved for the treatment of certain types of HER2-amplified cancers such as breast and gastric cancers. Research has shown...
-
Testing VS-6063 (Defactinib) as a Potential Targeted Treatment in Cancers With NF2 Genetic Changes (MATCH-Subprotocol U)
This phase II MATCH treatment trial identifies the effects of VS-6063 (defactinib) in patients whose cancer has a genetic change called NF2 mutation. Defactinib may block a protein called FAK, which may be needed for cancer cell growth when NF2 mutations are present. Researchers hope to learn if defactinib will shrink this type of cancer or stop its growth.