
-
Tumor Hypoxia and Proliferation in Patients With High-Grade Glioma
This is a pilot study to assess a new methodology developed for High Grade Glioma (HGG). FMISO PET (Fluoromisonidazole-PET) allows researchers to study whether tumor cells lack oxygen (hypoxia). FLT PET (Fluorodeoxythymidine-PET) allows researchers to study the increase in the number of cells as a result of cell growth and cell division (proliferation). Tumors that have low oxygen levels and/or are dividing fast shall resist to standard cancer treatment. The study will compare FMISO PET and FLT PET imaging techniques with molecular biomarkers of hypoxia, angiogenesis, and cellular proliferation in tissue. proliferation).This information could help researchers develop new...
-
Ultrasound-based Blood-brain Barrier Opening and Albumin-bound Paclitaxel and Carboplatin for Recurrent Glioblastoma
Paclitaxel is among the most active agents against glioblastoma in preclinical models. However, its clinical use has been hampered by the blood-brain barrier (BBB). In this trial we will implant a novel device with 9 ultrasound emitters allowing to temporarily and reversibly open the BBB immediately prior to chemotherapy infusion with albumin-bound paclitaxel. In the phase 1 component, increasing doses of chemotherapy will be delivered as long deemed safe based on the prior patient not experiencing severe toxicity. Once the the recommended dosing has been established, carboplatin will be added to the regimen and additional patients will be treated in order to better evaluate the...
-
Veliparib, Radiation Therapy, and Temozolomide in Treating Patients With Newly Diagnosed Malignant Glioma Without H3 K27M or BRAFV600 Mutations
This phase II trial studies how well veliparib, radiation therapy, and temozolomide work in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations. Poly adenosine diphosphate (ADP) ribose polymerases (PARPs) are proteins that help repair DNA mutations. PARP inhibitors, such as veliparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping...
-
Vorinostat and Temozolomide in Treating Patients With Malignant Gliomas
This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating patients with malignant gliomas. Drugs used in chemotherapy, such as vorinostat and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug. Giving vorinostat together with temozolomide may kill more tumor cells.
-
Whole Brain Radiation Therapy With Standard Temozolomide Chemo-Radiotherapy and Plerixafor in Treating Patients With Glioblastoma
This phase II trial studies how well whole brain radiation therapy works with standard temozolomide chemo-radiotherapy and plerixafor in treating patients with glioblastoma (brain tumor). Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Plerixafor is a drug that may prevent recurrence of glioblastoma after radiation treatment. Giving whole brain radiation therapy with standard temozolomide chemo-radiotherapy and plerixafor may work better in...
-
Expanded Access Program for GBM Subjects
This small-size patient population expanded access program is to provide access to investigational product RZ-001 for up to around 4 patients with human telomerase reverse transcriptase(hTERT)-positive Glioblastoma (GBM) who are not eligible to participate in the RZ-001-201 clinical study or in any other study involving the use of RZ-001
-
Expanded Access Protocol for GBM Patients With Already Manufactured DCVax®-L Who Have Screen-Failed Protocol 020221
The study is an open-label expanded access study for patients for whom vaccine was manufactured during the Northwest Biotherapeutics' 020221 DCVax-L for GBM screening process, but who subsequently failed to meet specific enrollment criteria. Patients will receive therapy per investigator discretion (standard of care) as well as active vaccine per the 020221 protocol administration schedule. It is estimated that approximately 99 patients will enroll in this study.
-
Expanded Access to Gallium Maltolate (GaM)
The objective of this program is to provide GaM for compassionate use in patients with relapsed/refractory histologic or molecular glioblastoma who have exhausted available treatments. The population of this program is adult patients aged greater than or equal to 18 years with a diagnosis of relapsed/refractory histologic or molecular glioblastoma, according to the WHO 2021 diagnostic criteria. Molecular glioblastoma is characterized as an IDH-wildtype diffuse and astrocytic glioma in adults if there is microvascular proliferation or necrosis or TERT promoter mutation or EGFR gene amplification or +7/-10 chromosome copy number changes
-
Expanded Access to Immunomodulatory AVM0703 for Solid Tumor and Blood Cancer Patients
AVM Biotechnology, Inc., provides immunomodulatory AVM0703 to solid tumor and blood cancer patients upon request by a US licensed MD or DO. As of July 2024, 37 patients have been treated through this FDA-EAP including patients diagnosed with relapsed or recurring glioblastoma, inoperable/chemotherapy ineligible CNS Squamous Cell Carcinoma, metastatic Breast Cancer, ovarian cancer, gastric cancer, Hodgkin's Lymphoma, Mixed Phenotype Acute Myelogenous Leukemia, colon cancer, B-ALL, Malignant Myxoid Spindle Cell Neoplasm, non-small cell lung cancer, DLBCL with CNS involvement, metastatic prostate cancer, Anaplastic T-cell Non-Hodgkin's Lymphoma and metastatic pancreatic cancer....
-
Expanded Access to Ulixertinib (BVD-523) in Patients with Advanced MAPK Pathway-Altered Malignancies
The objective of this expanded access program is to provide ulixertinib (BVD-523) for compassionate use in advanced cancer patients with MAPK pathway-altered solid tumor(s), including but not limited to KRAS, NRAS, HRAS, BRAF, MEK, and ERK mutations who have incomplete response to or have exhausted available therapies. Ulixertinib is available for treatment as monotherapy or in combination with other clinically tolerable agent(s), conditionally approved by the drug manufacturer.